аксиома выбора


аксиома выбора
        АКСИОМА ВЫБОРА (от греч. axioma — принятое положение) — один из важнейших теоретико-множественных принципов, введенный в 1904 Э. Цермело и утверждающий, что «для всякого семейства непустых множеств существует функция выбора, выбирающая из каждого множества этого семейства ровно по одному элементу». А. в. была введена в силу того факта, что имевшиеся к тому времени «наивные» принципы рассуждений не позволяли ответить на очень многие простые вопросы о множествах (напр., на вопрос о сравнении мощностей двух произвольных множеств). С помощью А. в. Э. Цермело удалось доказать, что всякое множество может быть вполне упорядочено (как оказалось, это просто одна из эквивалентных форм А. в.). А. в. вызвала серьезные возражения со стороны многих математиков начала 20 в. как самой формулировкой, так и некоторыми своими следствиями (утверждавшими существование множеств с непривычными свойствами, напр. неизмеримого множества действительных чисел, или того факта, что множество действительных чисел можно вполне упорядочить). Главная причина отрицательного отношения к принятию А. в. состояла в абсолютно неконструктивном характере этого принципа, не содержащего никаких указаний для построения объекта с заданными свойствами. Тем не менее оказалось (и это было подтверждено дальнейшими исследованиями в метаматематике и дескриптивной теории множеств), что некоторые утверждения, совершенно необходимые для построения математического анализа и теории меры, не могут быть получены без А. в. Однако для доказательства этих утверждений необходима не полная форма А. в., а так называемая счетная форма А. в., которая постулирует существование функции выбора в случае, если семейство непустых множеств счетно. Оказалось, что именно такой формы А. в. достаточно, чтобы построить теорию меры и математический анализ в привычном для классического математика виде. А. в. оказалась как совместной (К. Гедель, 1939), так и независимой (П. Коэн, 1963) от остальных постулатов теории множеств Цермело—Френкеля (а также и от ряда теоретико-множественных принципов, вводимых в дальнейшем для подобного исследования). Отметим также, что А. в. несовместна с некоторыми аксиоматическими системами теории множеств с подлежащей классической логикой (т.е. в таких системах выводимо отрицание А. в.). Таким образом, вопрос о принятии А. в. в полном виде или в виде некоторых «урезанных» форм зависит от того, какую математическую теорию мы желаем построить, т.е. от исходных философских установок. См. Множеств теория.
        В.Х. Хаханян

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация». . 2009.

Смотреть что такое "аксиома выбора" в других словарях:

  • АКСИОМА ВЫБОРА —     АКСИОМА ВЫБОРА см. Множеств теория. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • Аксиома выбора — Аксиомой выбора называется следующее высказывание теории множеств: «Для каждого семейства непустых непересекающихся множеств существует (по меньшей мере одно) множество , которое имеет только один общий элемент c каждым из множеств данного… …   Википедия

  • ВЫБОРА АКСИОМА —     ВЫБОРА АКСИОМА ем. Множеств теория. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • Аксиома — В Викисловаре есть статья «аксиома» Аксиома (др. греч …   Википедия

  • АКСИОМА — (от греч. axioma значимое, принятое положение) исходное, принимаемое без доказательства положение к. л. теории, лежащее в основе доказательств др. ее положений. Долгое время термин «А.» понимался не просто как отправной пункт доказательств, но и… …   Философская энциклопедия

  • Аксиома параллельности Евклида — Пересечения прямых (анимация) Аксиома параллельности Евклида, или пятый постулат  одна из аксиом, лежащ …   Википедия

  • ВЫБОРА АКСИОМА — одна из аксиом теории множеств, гласящая: для всякого семейства Fнепустых множеств существует функция f такая, что для всякого множества Sиз Fимеет место (при этом f наз. функцией выбора на F). Для конечных семейств FВ. а. выводима из остальных… …   Математическая энциклопедия

  • аксиома — (от греч. axioma значимое, принятое положение) исходное, принимаемое без доказательства положение к. л. теории, лежащее в основе доказательств других ее положений. Долгое время термин А. понимался не просто как отправной пункт доказательств, но и …   Словарь терминов логики

  • Утверждения, эквивалентные аксиоме выбора — В данной статье рассматриваются различные формулировки и доказывается эквивалентность следующих предложений: Аксиома выбора Теорема Цермело Принцип максимума Хаусдорфа Лемма Куратовского Цорна Эквивалентность этих предложений следует понимать в… …   Википедия

  • БЕСКОНЕЧНОСТИ АКСИОМА — аксиома формальной или содержательной теории, обеспечивающая на . личие бесконечного количества объектов в рассматриваемой теории. Так, Б …   Математическая энциклопедия

Книги

Другие книги по запросу «аксиома выбора» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.